## Right Triangles and the Sine Ratio MATHPOWER<sup>TM</sup> Nine, pp. 239-241

A second example of a trigonometric ratio is the sine ratio.

In a right triangle, the sine ratio of an acute angle is defined as side opposite the angle hypotenuse

In  $\triangle$ MAC, the sine ratio of  $\triangle$ A is  $\frac{MC}{\triangle C}$ .

In  $\triangle$ MAC, the sine ratio of  $\angle$ C is  $\frac{AM}{\triangle C}$ 



Use a calculator to find the sine of each angle, to three decimal places.

Find  $\angle B$ , to the nearest degree.

7. 
$$\sin B = 0.990 8. \sin B = 0.208 /2$$

$$A_{\rm sin} B = 0.208 / 2$$

9. 
$$\sin B = 0.500 \frac{30}{10}$$
 10.  $\sin B = 1.000 \frac{90}{10}$ 

10. 
$$\sin B = 1.000 \ 90$$

11. 
$$\sin B = 0.345$$

**11.** 
$$\sin B = 0.345$$
 **12.**  $\sin B = 0.755$  **4**

Find  $\angle G$ , to the nearest degree.

13. 
$$\sin G = \frac{1}{2}$$
 30

13. 
$$\sin G = \frac{1}{2}$$
 30 14.  $\sin G = \frac{2}{5}$  24

15. 
$$\sin G = \frac{4}{5}$$

15. 
$$\sin G = \frac{4}{5} \frac{53}{5}$$
 16.  $\sin G = \frac{5}{8} \frac{39}{5}$ 

17. 
$$\sin G = \frac{1}{11} \frac{5}{11}$$
 18.  $\sin G = \frac{8}{9} \frac{63}{11}$ 

18. 
$$\sin G = \frac{8}{9} \frac{63}{63}$$

Calculate sin Y. Then, find  $\angle Y$ , to the nearest degree.







Calculate y, to the nearest hundredth of a metre.

21.



22.



23.



24.



25.



26.



27.  $\triangle$ KLM is an equilateral triangle. The length of each side of the triangle is 15 cm. Find the height of the triangle, to the nearest tenth of a centimetre.